资源类型

期刊论文 462

会议视频 11

年份

2023 28

2022 52

2021 44

2020 37

2019 29

2018 20

2017 27

2016 21

2015 21

2014 16

2013 9

2012 30

2011 15

2010 21

2009 23

2008 26

2007 22

2006 3

2005 4

2004 4

展开 ︾

关键词

动力特性 4

临床特征 3

2035 2

中国 2

中国特色 2

农业科学 2

发展趋势 2

增材制造 2

新冠病毒肺炎 2

有限元 2

海上风电场 2

生物表面活性剂 2

生物降解 2

经济 2

2-羟基丁酸 1

Al@AP/PVDF纳米复合材料 1

CMAC神经网络 1

CO2利用 1

DX桩 1

展开 ︾

检索范围:

排序: 展示方式:

Influence of pore structure on biologically activated carbon performance and biofilm microbial characteristics

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1419-1

摘要:

• Pore structure affects biologically activated carbon performance.

关键词: Granular activated carbon     Biologically activated carbon filter     Bacterial community structure     Pore structure    

integrated-bioreactor with two zones treating odours from sludge thickening tank and dewatering house: performance and microbialcharacteristics

Jianwei Liu, Kaixiong Yang, Lin Li, Jingying Zhang

《环境科学与工程前沿(英文)》 2017年 第11卷 第4期 doi: 10.1007/s11783-017-0932-8

摘要: A full-scale integrated-bioreactor consisting of a suspended zone and an immobilized zone was employed to treat the ordours emitted from a wastewater treatment plant. The inlet concentrations of H S and NH were 1.6–38.6 mg·m and 0.1–6.7 mg·m , respectively, while the steady-state outlet concentrations were reduced to 0–2.8 mg·m for H S and 0–0.5 mg·m for NH . Both H S and NH were eliminated effectively by the integrated bioreactor. The removal efficiencies of H S and NH differed between the two zones. Four species of microorganisms related to the degradation of H S and NH were isolated. The characteristics and distributions of the microbes in the bioreactor depended on the inlet concentration of substrates and the micro-environmental conditions in the individual zones. Product analysis indicated that most of the H S was oxidized into sulfate in the immobilized zone but was dissolved into the liquid phase in the suspended zone. A large amount of NH was converted into nitrate and nitrite by nitration in the suspended zone, whereas only a small amount of NH was transferred to the aqueous phase mainly by absorption or chemical neutralization in the immobilized zone. Different microbial populations dominated the individual zones, and the major biodegradation products varied accordingly.

关键词: Biological deodorization     Microbial characteristics     Ammonia     Hydrogen sulfide     Wastewater treatment plant    

Responses of microbial interactions to elevated salinity in activated sludge microbial community

《环境科学与工程前沿(英文)》 2023年 第17卷 第5期 doi: 10.1007/s11783-023-1660-x

摘要:

● Salinity led to the elevation of NAR over 99.72%.

关键词: Elevated salinity     Activated sludge system     Pollution removal     Microbial interactions     Competitive relationship    

Characteristics and Influencing Factors of Microplastics in Snow in the Inner Mongolia Plateau, China

Hongwei Yu,Junrong Shao,Huawei Jia,Diga Gang,Baiwen Ma,Chengzhi Hu,

《工程(英文)》 doi: 10.1016/j.eng.2023.02.007

摘要: Microplastics (MPs; < 5 mm) have become one of the most prominent global environmental pollution problems. MPs can spread to high altitudes through atmospheric transport and can be deposited by rainfall or snowfall, potentially threatening the structure and function of natural ecosystems. MPs in terrestrial and aquatic ecosystems alter the growth and functional characteristics of organisms. However, little attention has been given to the possible harm associated with MPs deposited in snow, particularly in the context of global climate warming. MPs collected from surface snow in the Inner Mongolia Plateau, China, were used for quantitative analysis and identification. The results showed that MPs were easily detected, and the related concentration was approximately 68 ± 10–199 ± 22 MPs·L−1 in snow samples. Fibers were the most common morphology, the polymer composition was largely varied, and the abundance and composition of MPs were linked to human activity to a great extent. High-throughput sequencing results showed that the composition and abundance of microorganisms also differed in snow samples from areas with different MP pollution characteristics, indicating a considerable difference in microbial functional diversity. MPs may have an interference effect on the individual growth and functional expression of microorganisms in snow. In addition, the results showed that functional living areas (e.g., landfills and suburban areas) in cities play an important role in the properties of MPs. For instance, the highest abundance of MPs was found in thermal power plants, whereas the abundance of polymers per sample was significantly lower in landfills. The MP contaminants hidden in snow can alter microbial structure and function and are therefore a potential threat to ecosystem health.

关键词: Human activities     Snow     Microplastics     Microbial community     Urban function     Environmental effect    

Using pyrosequencing and quantitative PCR to analyze microbial communities

Husen ZHANG

《环境科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 21-27 doi: 10.1007/s11783-011-0303-9

摘要: New high-throughput technologies continue to emerge for studying complex microbial communities. In particular, massively parallel pyrosequencing enables very high numbers of sequences, providing a more complete view of community structures and a more accurate inference of the functions than has been possible just a few years ago. In parallel, quantitative real-time polymerase chain reaction (QPCR) allows quantitative monitoring of specific community members over time, space, or different environmental conditions. In this review, the principles of these two methods and their complementary applications in studying microbial ecology in bioenvironmental systems are discussed. The parallel sequencing of amplicon libraries and using barcodes to differentiate multiple samples in a pyrosequencing run are explained. The best procedures and chemistries for QPCR amplifications are also described and advantages of applying automation to increase accuracy are addressed. Three examples in which pyrosequencing and QPCR were used together to define and quantify members of microbial communities are provided: in the human large intestine, in a methanogenic digester whose sludge was made more bioavailable by a high-voltage pretreatment, and on the biofilm anode of a microbial electrolytic cell. The key findings in these systems and how both methods were used in concert to achieve those findings are highlighted.

关键词: polymerase chain reaction (PCR)     microbial communities     pyrosequencing     gut     microbial fuel cell     sludge    

LINKING CROP WATER PRODUCTIVITY TO SOIL PHYSICAL, CHEMICAL AND MICROBIAL PROPERTIES

《农业科学与工程前沿(英文)》 2021年 第8卷 第4期   页码 545-558 doi: 10.15302/J-FASE -2020349

摘要:

Agriculture uses a large proportion of global and regional water resources. Due to the rapid increase of population in the world, the increasing competition for water resources has led to an urgent need in increasing crop water productivity for agricultural sustainability. As the medium for crop growth, soils and their properties are important in affecting crop water productivity. This review examines the effects of soil physical, chemical, and microbial properties on crop water productivity and the quantitative relationships between them. A comprehensive view of these relationships may provide important insights for soil and water management in arable land for agriculture in the future.

 

关键词: crop water productivity     crop yield     soil chemical properties     soil microbial properties     soil physical properties     water consumption    

thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-020-1342-x

摘要:

• SMX addition had negative effect on acetoclastic methanogens in mesophilic AD.

关键词: Pig manure     Antibiotics     Anaerobic digestion     Resistance genes     Microbial community    

porphyrinic triazine-based frameworks with excellent biocompatibility for conversion of CO in H-mediated microbial

《化学科学与工程前沿(英文)》 2022年 第16卷 第12期   页码 1761-1771 doi: 10.1007/s11705-022-2195-6

摘要: Microbial electrosynthesis is a promising alternative to directly convert CO2 into long-chain compounds by coupling inorganic electrocatalysis with biosynthetic systems. However, problems arose that the conventional electrocatalysts for hydrogen evolution may produce extensive by-products of reactive oxygen species and cause severe metal leaching, both of which induce strong toxicity toward microorganisms. Moreover, poor stability of electrocatalysts cannot be qualified for long-term operation. These problems may result in poor biocompatibility between electrocatalysts and microorganisms. To solve the bottleneck problem, Co anchored on porphyrinic triazine-based frameworks was synthesized as the electrocatalyst for hydrogen evolution and further coupled with Cupriavidus necator H16. It showed high selectivity for a four-electron pathway of oxygen reduction reaction and low production of reactive oxygen species, owing to the synergistic effect of Co–Nx modulating the charge distribution and adsorption energy of intermediates. Additionally, low metal leaching and excellent stability were observed, which may be attributed to low content of Co and the stabilizing effect of metalloporphyrins. Hence, the electrocatalyst exhibited excellent biocompatibility. Finally, the microbial electrosynthesis system equipped with the electrocatalyst successfully converted CO2 to poly-β-hydroxybutyrate. This work drew up a novel strategy for enhancing the biocompatibility of electrocatalysts in microbial electrosynthesis system.

关键词: microbial electrosynthesis     hydrogen evolution reaction     metalloporphyrins     biocompatibility     CO2 conversion    

Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced

Jingya SHEN,Yuliang SUN,Liping HUANG,Jinhui YANG

《环境科学与工程前沿(英文)》 2015年 第9卷 第6期   页码 1084-1095 doi: 10.1007/s11783-015-0805-y

摘要: Cobalt and copper recovery from aqueous Co(II) and Cu(II) is one critical step for cobalt and copper wastewaters treatment. Previous tests have primarily examined Cu(II) and Co(II) removal in microbial electrolysis cells (MECs) with abiotic cathodes and driven by microbial fuel cell (MFCs). However, Cu(II) and Co(II) removal rates were still slow. Here we report MECs with biocathodes and driven by MFCs where enhanced removal rates of 6.0±0.2 mg?L ?h for Cu(II) at an initial concentration of 50 mg?L and 5.3±0.4 mg?L h for Co(II) at an initial 40 mg?L were achieved, 1.7 times and 3.3 times as high as those in MECs with abiotic cathodes and driven by MFCs. Species of Cu(II) was reduced to pure copper on the cathodes of MFCs whereas Co(II) was removed associated with microorganisms on the cathodes of the connected MECs. Higher Cu(II) concentrations and smaller working volumes in the cathode chambers of MFCs further improved removal rates of Cu(II) (115.7 mg?L ?h ) and Co(II) (6.4 mg?L ?h ) with concomitantly achieving hydrogen generation (0.05±0.00 mol?mol COD). Phylogenetic analysis on the biocathodes indicates dominantly accounted for 67.9% of the total reads, followed by (14.0%), (6.1%), (2.5%), (1.4%), and (1.0%). This study provides a beneficial attempt to achieve simultaneous enhanced Cu(II) and Co(II) removal, and efficient Cu(II) and Co(II) wastewaters treatment without any external energy consumption.

关键词: biocathode     microbial electrolysis cell     microbial fuel cell     Cu(II) removal     Co(II) removal    

Current molecular biologic techniques for characterizing environmental microbial community

Dawen GAO, Yu TAO

《环境科学与工程前沿(英文)》 2012年 第6卷 第1期   页码 82-97 doi: 10.1007/s11783-011-0306-6

摘要: Microbes are vital to the earth because of their enormous numbers and instinct function maintaining the natural balance. Since the microbiology was applied in environmental science and engineering more than a century ago, researchers desire for more and more information concerning the microbial spatio-temporal variations in almost every fields from contaminated soil to wastewater treatment plant (WWTP). For the past 30 years, molecular biologic techniques explored for environmental microbial community (EMC) have spanned a broad range of approaches to facilitate the researches with the assistance of computer science: faster, more accurate and more sensitive. In this feature article, we outlined several current and emerging molecular biologic techniques applied in detection of EMC, and presented and assessed in detail the application of three promising tools.

关键词: molecular biological technique     microbial community     denaturing gradient gel electrophoresis (DGGE)     terminal restriction fragment length polymorphism (T-RFLP)     environmental applications    

Comparison of the removal of monovalent and divalent cations in the microbial desalination cell

Shanshan CHEN,Haiping LUO,Yanping HOU,Guangli LIU,Renduo ZHANG,Bangyu QIN

《环境科学与工程前沿(英文)》 2015年 第9卷 第2期   页码 317-323 doi: 10.1007/s11783-013-0596-y

摘要: Microbial desalination cell (MDC) is a promising technology to desalinate water and generate electrical power simultaneously. The objectives of this study were to investigate the desalination performance of monovalent and divalent cations in the MDC, and discuss the effect of ion characteristics, ion concentrations, and electrical characteristics. Mixed salt solutions of NaCl, MgCl , KCl, and CaCl with the same concentration were used in the desalination chamber to study removal of cations. Results showed that in the mixed salt solutions, the electrodialysis desalination rates of cations were: Ca >Mg >Na >K . Higher ionic charges and smaller hydrated ionic radii resulted in higher desalination rates of the cations, in which the ionic charge was more important than the hydrated ionic radius. Mixed solutions of NaCl and MgCl with different concentrations were used in the desalination chamber to study the effect of ion concentrations. Results showed that when ion concentrations of Na were one-fifth to five times of Mg , ion concentration influenced the dialysis more profoundly than electrodialysis. With the current densities below a certain value, charge transfer efficiencies became very low and the dialysis was the main process responsible for the desalination. And the phosphate transfer from the anode chamber and potassium transfer from the cathode chamber could balance 1%–3% of the charge transfer in the MDC.

关键词: divalent ion     electrodialysis     ion characteristic     microbial desalination cell     monovalent ion    

Water-dispersible nano-pollutions reshape microbial metabolism in type-specific manners: A metabolic

《环境科学与工程前沿(英文)》 2022年 第16卷 第9期 doi: 10.1007/s11783-022-1548-1

摘要:

• Water-dispersible nano-pollutions exhibit type-specific toxic effects on E. coli.

关键词: Nano-toxicity     Nano-plastics     Quantum dots     Microbial metabolite     Metabolic dysregulation    

Repeated batch fermentation with water recycling and cell separation for microbial lipid production

Yumei WANG, Wei LIU, Jie BAO

《化学科学与工程前沿(英文)》 2012年 第6卷 第4期   页码 453-460 doi: 10.1007/s11705-012-1210-8

摘要: Large waste water disposal was the major problem in microbial lipid fermentation because of low yield of lipid. In this study, the repeated batch fermentation was investigated for reducing waste water generated in the lipid fermentation of an oleaginous yeast CX1 strain. The waste fermentation broth was recycled in the next batch operation after the cells were separated using two different methods, centrifugation and flocculation. Two different sugar substrates, glucose and inulin, were applied to the proposed operation. The result showed that at least 70% of the waste water was reduced, while lipid production maintained satisfactory in the initial four cycles. Furthermore, it is suggested that CX1 cells might produce certain naturally occurring inulin hydrolyzing enzyme(s) for obtaining fructose and glucose from inulin directly. Our method provided a practical option for reducing the waste water generated from microbial lipid fermentation.

关键词: batch fermentation     microbial lipid     Trichosporon cutaneum CX1     flocculation     waste water recycle    

我国农业微生物产业发展研究

周杨,邓名荣,杜娟,宋仲戬,吴清平,朱红惠

《中国工程科学》 2022年 第24卷 第5期   页码 197-206 doi: 10.15302/J-SSCAE-2022.07.007

摘要:

农业微生物产业作为利用农业微生物资源和生物技术形成的生物科技产业和高增值农业,涉及种植业、养殖业、农业环境等,在保障粮食安全、提升耕地质量、促进农业减排方面具有重要意义。本文从微生物肥料、饲用微生物产品、微生物农药、酶制剂微生物产品、农业废弃物资源化利用等方向,梳理了我国农业微生物产业的发展现状,进而总结了农业微生物技术与产业发展趋势;在研判种质资源、技术研究、产品研发、行业标准等农业微生物产业发展面临问题的基础上,提出了布局科研平台专项、建设数据信息系统、加强微生物种业创新、构建法律法规体系等重点举措。建立完善的产业政策体系和相关配套措施,健全农业微生物产业创新体系,孵化参与国际竞争的高科技企业,以此保障我国农业微生物产业高质量发展。

关键词: 农业微生物;产业发展;微生物肥料;饲用微生物;微生物农药;酶制剂微生物;微生物种业    

Gut microbial balance and liver transplantation: alteration, management, and prediction

null

《医学前沿(英文)》 2018年 第12卷 第2期   页码 123-129 doi: 10.1007/s11684-017-0563-2

摘要:

Liver transplantation is a conventional treatment for terminal stage liver diseases. However, several complications still hinder the survival rate. Intestinal barrier destruction is widely observed among patients receiving liver transplant and suffering from ischemia–reperfusion or rejection injuries because of the relationship between the intestine and the liver, both in anatomy and function. Importantly, the resulting alteration of gut microbiota aggravates graft dysfunctions during the process. This article reviews the research progress for gut microbial alterations and liver transplantation. Especially, this work also evaluates research on the management of gut microbial alteration and the prediction of possible injuries utilizing microbial alteration during liver transplantation. In addition, we propose possible directions for research on gut microbial alteration during liver transplantation and offer a hypothesis on the utilization of microbial alteration in liver transplantation. The aim is not only to predict perioperative injuries but also to function as a method of treatment or even inhibit the rejection of liver transplantation.

关键词: gut microbial balance     liver transplantation     ischemia–reperfusion     acute rejection    

标题 作者 时间 类型 操作

Influence of pore structure on biologically activated carbon performance and biofilm microbial characteristics

期刊论文

integrated-bioreactor with two zones treating odours from sludge thickening tank and dewatering house: performance and microbialcharacteristics

Jianwei Liu, Kaixiong Yang, Lin Li, Jingying Zhang

期刊论文

Responses of microbial interactions to elevated salinity in activated sludge microbial community

期刊论文

Characteristics and Influencing Factors of Microplastics in Snow in the Inner Mongolia Plateau, China

Hongwei Yu,Junrong Shao,Huawei Jia,Diga Gang,Baiwen Ma,Chengzhi Hu,

期刊论文

Using pyrosequencing and quantitative PCR to analyze microbial communities

Husen ZHANG

期刊论文

LINKING CROP WATER PRODUCTIVITY TO SOIL PHYSICAL, CHEMICAL AND MICROBIAL PROPERTIES

期刊论文

thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial

期刊论文

porphyrinic triazine-based frameworks with excellent biocompatibility for conversion of CO in H-mediated microbial

期刊论文

Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced

Jingya SHEN,Yuliang SUN,Liping HUANG,Jinhui YANG

期刊论文

Current molecular biologic techniques for characterizing environmental microbial community

Dawen GAO, Yu TAO

期刊论文

Comparison of the removal of monovalent and divalent cations in the microbial desalination cell

Shanshan CHEN,Haiping LUO,Yanping HOU,Guangli LIU,Renduo ZHANG,Bangyu QIN

期刊论文

Water-dispersible nano-pollutions reshape microbial metabolism in type-specific manners: A metabolic

期刊论文

Repeated batch fermentation with water recycling and cell separation for microbial lipid production

Yumei WANG, Wei LIU, Jie BAO

期刊论文

我国农业微生物产业发展研究

周杨,邓名荣,杜娟,宋仲戬,吴清平,朱红惠

期刊论文

Gut microbial balance and liver transplantation: alteration, management, and prediction

null

期刊论文